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Abstract

Background: Exposure to some environmental chemicals is ubiquitous and linked to a variety of 

adverse outcomes, including children’s health. While few studies have assessed the contribution of 

both male and female exposures to children’s health, understanding the patterns of couple’s 

exposure is needed to understand their joint effects.

Objective: We assessed the correlation patterns between male and female partners’ 

concentrations of 37 environmental chemical biomarkers. We also assessed the temporal reliability 

of the biomarkers within couples.
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Methods: We calculated Spearman pairwise correlations between specific gravity adjusted 

urinary biomarker concentrations and hair mercury concentrations among 380 couples enrolled in 

the Environment and Reproductive Health (EARTH) study at the Massachusetts General Hospital 

Fertility Center (2004–2017). We calculated intra-class correlation coefficients (ICCs) for couple’s 

biomarkers to assess the temporal variability of these exposures within a couple using multiple 

paired-samples from couples.

Results: All biomarkers were positively correlated within couples (range: 0.05 for tert-
butylphenyl phenyl phosphate to 0.66 for triclosan). In general, the biomarkers with the highest 

within couple correlation were those of chemicals for which diet (e.g., di(2-ethylhexyl) phthalate), 

personal care products use (e.g., triclosan, benzophenone-3), and the indoor environment (e.g., 

2,5-dichlorophenol) are considered primary exposure sources. Most other biomarkers were 

moderately correlated (0.3– < 0.6). Similar patterns of temporal reliability were observed across 

biomarkers.

Conclusions: Urinary concentrations of several biomarkers were mostly moderately correlated 

within couples, suggesting similar exposure sources. Future epidemiological studies should collect 

samples from both partners to be able to accurately determine the contribution of maternal and 

paternal exposures to offspring health.
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1. Introduction

There is increasing concern regarding the health effects of chemical exposures. Endocrine 

disrupting chemicals (EDCs) have been investigated for potential health effects, including 

adverse reproductive health outcomes in both men and women. These chemicals include, 

among others, phthalates and their alternatives, phenols (Messerlian et al., 2018a), and 

organophosphate flame retardants (PFRs) (Carignan et al., 2017; Carignan et al., 2018). 

There is ubiquitous exposure to these chemicals among the general population, including 

men and women of reproductive age. Another exposure of concern is mercury, a 

neurotoxicant and potential reproductive toxicant that can pass through the placental barrier 

(Minguez-Alarcon et al., 2018; Wright et al., 2015).

Although studies have reported associations between biomarkers of these EDCs with 

adverse reproductive outcomes, a common limitation in almost all studies is that they only 

measure either maternal or paternal biomarkers of exposure, but not both. Only a few studies 

(Buck Louis et al., 2012; Buck Louis et al., 2013; Buck Louis et al., 2014; Messerlian et al., 

2017; Messerlian et al., 2018a; Robledo et al., 2015; Wu et al., 2017a; Wu et al., 2017b) 

have considered both paternal and maternal exposures. However, limited information on the 

correlation patterns of the exposures within the same couple may impact the statistical 

analysis of associations with male and female exposures. Only one recent study has 

examined the correlation patterns among couples in the general population, although there 

was only a single sample from each partner (Chung et al., 2018). In addition, it is important 

to know if we can disentangle maternal from paternal contributions and determine whether 

Nassan et al. Page 2

Environ Int. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



joint exposures within or across couples are important. Consequently, this will inform future 

studies to better assess exposure to these chemicals and how to efficiently use limited 

research resources.

Therefore, taking advantage of the Environment and Reproductive Health (EARTH) cohort 

study which evaluated urinary concentrations of a wide array of biomarkers in urine and 

mercury in hair, we examined the correlation patterns among biomarkers and mercury within 

couples. We assessed the temporal reliability of these biomarkers within couples (when both 

the male and female partner participated), and also within all women and men participating 

in the EARTH study regardless of whether their partner participated. We hypothesized that 

concentrations of biomarkers that are highly correlated within couples would represent 

chemicals with common sources among couples.

2. Methods

2.1. Study population

The EARTH study (2004–present) is an ongoing prospective cohort that has been enrolling 

couples seeking fertility treatment at the Massachusetts General Hospital (MGH) Fertility 

Center to identify determinants of fertility (Messerlian et al., 2018b). Women and men 

between 18–46 years and 1855 years, respectively, were eligible to participate, and 

approximately 50–60% of those men and women contacted by the research staff enrolled in 

the study. Couples were invited to participate but both men and women could participate 

without their partner. Upon enrollment, men and women completed questionnaires that 

collected information on demographics, lifestyle, and health information, and the research 

staff measured their height and weight. At recruitment and at subsequent visits, both men 

and women provided spot urine samples and one hair sample. Participants were followed 

from study enrollment until the female partner had a live birth or the couple discontinued 

treatment at MGH. Urine samples are usually collected at different times within the EARTH 

study for men/women. In the current analysis, men and women were eligible if they were 

part of a participating heterosexual couple and provided at least one urine sample on the 

same day as their partner. A subset of those couples also provided hair samples. All 

participants signed an informed consent after study procedures were explained to them by 

research study staff. The EARTH study was approved by institutional review boards at 

MGH, the Harvard T.H. Chan School of Public Health, and the Centers for Disease Control 

and Prevention (CDC).

2.2. Quantification of urinary biomarker concentrations

At each visit, participants provided a spot urine sample in a sterile polypropylene cup using 

standard procedures. Study staff recorded the time of collection and measured specific 

gravity (SG) using a handheld refractometer (National Instrument Co. Inc.). Urine samples 

were divided into aliquots, frozen, and stored at –80 °C before overnight shipment on dry ice 

to H.M. Stapleton’s laboratory at Duke University (Durham, NC) for quantification of PFRs 

and to the CDC laboratory (Atlanta, GA) for quantification of all other urinary biomarkers. 

Each biomarker was measured by the same laboratory following the same methods 

consistently over the whole study period. The samples were collected from 2004 to 2017 and 
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were sent for chemical analysis in batches to the laboratories over years. Although time 

elapsed between collection and analyses ranged from months to several years, at the 

subfreezing temperatures used for storage of the study samples, urinary concentrations of 

phthalates and phenols biomarkers are known to be stable for years (Samandar et al., 2009; 

Ye et al., 2007).

Briefly, the analytical techniques for quantification of the urinary biomarkers of phthalates, 

phenols, and flame retardants involved enzymatic deconjugation of the target analytes 

followed by solid-phase extraction, separation by high performance liquid chromatography, 

and detection by isotope-dilution tandem mass spectrometry (Dwivedi et al., 2018; Silva et 

al., 2013; Zhou et al., 2014).

CDC staff quantified total (free plus conjugated) urinary concentrations (μg/L) of 

triclocarban, eleven phenols: (bisphenol F (BPF), bisphenol A (BPA), bisphenol S (BPS), 

methylparaben, ethylparaben, propylparaben, butylparaben, benzophenone-3, triclosan, 2,4-

di-chlorophenol, and 2,5-dichlorophenol), and of twenty phthalate and phthalate alternative 

metabolites: cyclohexane-1 2-dicarboxylic acid monohydroxy isononyl ester (MHiNCH), 

cyclohexane-1 2-dicarboxylic acid monocarboxyisooctyl ester (MCOCH), mono-methyl 

phthalate (mMP), monoethyl phthalate (MEP), mono-n-butyl phthalate (MnBP), mono-

isobutyl phthalate (MiBP), mono-hydroxybutyl phthalate (MHBP), mono-hydroxyisobutyl 

phthalate (MHiBP), mono-3-carboxypropyl phthalate (MCPP), monobenzyl phthalate 

(MBzP), mono-2-ethylhexyl phthalate (MEHP), monooxononyl phthalate (MONP), mono-2-

ethyl-5-hydrohexyl terephthalate (MEHHTP), mono-2-ethyl-5-oxohexyl phthalate 

(MEOHP), mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP), mono-isononyl phthalate 

(MiNP), mono-2-ethyl-5-carboxypentyl terephthalate (MECPTP), mono-2-ethyl-5-

carboxypentyl phthalate (MECPP), mono carboxyisooctyl phthalate (MCOP), and mono 

carboxyisononyl phthalate (MCNP).Duke staff quantified the urinary concentrations (μg/L) 

of five flame retardants: bis(1-chloro-2-propyl) phosphate (BCIPP), bis(1,3-dichloro-2-

propyl) phosphate (BDCIPP), diphenyl phosphate (DPHP), isopropylphenyl phenyl 

phosphate (ip-PPP), and tertbutyl-PPP (tb-PPP). The limits of detection (LOD) ranged from 

0.01 for tert-butylphenyl phenyl phosphate (tb-PPP) to 2.3 μg/L for triclosan.

2.3. Hair mercury

A hair sample was collected by study staff or if the hair was not long enough, participants 

were instructed to collect the hair sample when they went for a haircut. Before analysis, the 

hair samples were cleaned by sonication for 15min in a 1% Triton X-100 solution to remove 

extraneous contaminants. Staff at the Trace Metals Laboratory, Harvard T. H. Chan School 

of Public Health rinsed the hair samples with distilled deionized water and dried 5 times at 

60 °C for 48 h. Total mercury in parts per million (ppm) was measured using the proximal 2 

cm of hair using a Direct Mercury Analyzer 80 (Milestone Inc., Monroe, CT) with a matrix 

matched calibration curve. Certified reference material GBW 07601 (human hair; Institute 

of Geophysical and Geochemical Exploration, China) containing 360 ppm mercury was 

used as the quality control standard. The LOD for mercury was 0.01 ppm with the 

percentage recovery for quality control standards ranging from 90 to 110%.
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2.4. Statistical analysis

We calculated and compared descriptive statistics between men and women for the baseline 

characteristics such as age, race, body mass index (BMI), smoking, and education, and for 

the time varying characteristics such as season and time of the day of sample collection for 

both men and women among couples. We restricted our evaluation to urine samples 

collected on the same day for both partners due to the relatively short half-lives of the 

phenols, phthalates, and PFRs. Mercury concentrations in hair reflect exposure over several 

months (Grandjean et al., 2002) and have been shown to be correlated with mercury 

concentrations in blood and urine (Barbone et al., 2018; Foo et al., 1993; McDowell et al., 

2004). For inclusion in the present analysis we required hair samples of couples to be 

measured within two months of each other to correspond with the 2 cm of the hair samples 

used for the measurement of mercury. We accounted for urinary dilution by adjusting for 

SG, using the following formula: Pc = P [(SG mean – 1)/(SG – 1)], where Pc is the SG-

corrected urinary concentration (μg/L), P is the measured biomarker concentration (μg/L) of 

the urine sample, and SG mean is the mean SG concentration in the study population (1.014 

for women and 1.017 for men) (Hauser et al., 2004). We excluded BCIPP from the analyses 

because it was not detected in any of the measured samples. For the other biomarkers, values 

below the LOD were replaced with an imputed value (below the LOD), based on a single 

imputation conducted separately for each biomarker and sex using the fully conditional 

specification (FCS) method (Van Buuren, 2007). For any given value below the LOD, the 

predictors for imputation were race (Caucasian or not), age (continuous), ever smoking, and 

time of the urine sample collection.

We assessed biomarker concentrations as continuous variables, after natural-log 

transformation (and SG adjustment) because of skewed distributions. We assessed the 

pairwise correlations by calculating Spearman correlations among biomarker concentrations 

between partners using all samples per couple collected on the same days (paired-samples 

per couple collected on the same day repeated over time). We visualized the spearman 

correlations within and between partners as an exposome globe (Chung et al., 2018). We 

also assessed the between- and within-couple variability (i.e. temporal reliability) of 

biomarkers by calculating the intra-class correlation coefficients (ICC) of the couple’s 

biomarkers using paired-samples from couples collected on the same days repeated over 

time. ICCs for couples here represent the variance explained by “the shared environment” 

for the couples.

We also calculated the partial Spearman correlation and the adjusted ICC as proposed by 

Hankinson et al. (Hankinson et al., 1995) after adjusting for different predictors of 

biomarker concentrations for both partners. Selection of predictors was based on previous 

knowledge and included men’s and women’s race (Caucasian or not), age (continuous), ever 

smoking, and time of the day of the urine sample collection. None of these covariates made 

a substantial difference in the correlation or ICC estimation for couples’ biomarkers.

As a supplementary analysis, we calculated partner-specific ICCs for the biomarker 

concentrations for women and men who were part of participating couples as well as all men 

and women in the EARTH study to characterize the temporal reliability within each partner 
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over time. We conducted statistical analyses using SAS version 9.4 (SAS Institute Inc., Cary, 

NC) and the Circlize R package for exposome globe generation (v 0.3.1).

3. Results

Among 474 men and 819 women participants who enrolled in the EARTH study between 

2004 and 2017, there were 380 couples in which both the man and woman participated and 

provided at least one urine sample on the same day. These 380 couples collectively provided 

1682 urine samples (average of 4 samples/couple, i.e., 2 samples/partner) (Supplementary 

Fig. 1). All samples were provided pre-conception. Among those 380 couples, 145 couples 

also had a hair sample from each partner within two months.

Most men and women were Caucasian (84%) and had never smoked cigarettes (78%). Only 

3% of the women and 6% of the men were current smokers at the time of enrollment. The 

median age was higher in men (36.0 years) than women (34.3 years), and the median BMI 

was higher in men (27.6 kg/m2) than women (24.4 kg/m2). Only 12% of the men and 7% of 

the women did not have a college education (Table 1). Among the couples, 30% were 

diagnosed with male factor infertility, 33% with female factor infertility, and 37% with 

unexplained infertility at the time of enrollment. The majority (55%) of the urine samples 

and 76% of the hair samples were collected from 2005 through 2010. Urine collection time 

ranged from 7 am through 6:30 pm with 59% collected between 7 am and 10 am and only 

11% collected after 12 pm. There was a fairly even breakdown of when the samples were 

provided throughout the year.

The percentage of samples with detectable urinary biomarker concentrations ranged from < 

20% (triclocarban, MCOCH, BCIPP, tb-PPP) to 100% (MECPTP, MECPP) (Table 2). 

Spearman pairwise correlations between the same biomarker within a couple were all 

positive, with a median of 0.41 and range of 0.05 for tb-PPP to 0.66 for triclosan (Figs. 1 

and 2). In general, the correlations and 95% confidence interval (95% CI) were moderate 

(0.3 to 0.59) to high (≥0.6) except for triclocarbon, bisphenol F, methyparaben, 

butylparaben, MHBP, ip-PPP, and tb-PPP (< 0.3). The most highly correlated chemicals 

within couples were benzophenone-3, triclosan, 2,5-dichlorophenol, MEHHTP, and 

MECPTP. Almost all correlations were statistically significant.

The estimated ICCs were fair (0.4–0.59) or good (0.6–0.74) for several biomarkers and poor 

for others (< 0.4) (Rosner, 2011). The ICCs were strongest (lower within-couple variability) 

for triclosan, 2,5-dichlorophenol, MEHHTP, and MECPTP and were weakest for tb-PPP and 

ip-PPP (Fig. 3 and Supplementary Table 1). After adjustment for potential predictors of the 

biomarkers concentrations in both men and women, the partial correlations and adjusted 

ICCs were similar to the unadjusted ones. It is worth noting that in couples, the partner-

specific ICCs of the biomarkers were similar to each other and also similar to ICCs for all 

women and men participating in the EARTH study regardless of whether their partner 

participated (Supplementary Tables 2 and 3 and Supplementary Figs. 2 and 3). Among 

women, ICCs were highest for 2,5-dichlorophenol and triclosan and lowest for tb-PPP and 

DPHP. Among men, ICCs were highest for MONP, 2,5-dichlorophenol, BDCIPP, and 

benzophenone-3 and lowest for bisphenol S and bisphenol F.
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4. Discussion

In the present study, we investigated the between and within-partner correlations and 

temporal variability of 37 biomarkers including urinary phenols, phthalate and phthalate 

alternative metabolites, PFR metabolites, and hair mercury among partners of couples where 

urine samples were collected on the same day and within two months for the hair samples. 

The distributions of the couple’s biomarkers were comparable to concentrations from adults 

in the U.S. general population (Supplementary Table 4) (CDC, 2018). We observed 

moderate correlations between most biomarkers within a couple. Stronger correlations 

suggest similar exposure sources and weaker correlations could indicate different sources of 

exposure or possible differences in exposure timing even within the day of sample collection 

or even differences in absorption, metabolism, or excretion. Similarly, having a higher ICC 

for couples means that the variance between couples is higher than the within couple 

variance (between partners) and thus the variability for the biomarkers over time is mainly 

driven by between couples variance. In other words, a higher ICC means there may be 

shared factors that contribute to a couple’s exposure, which we refer to as “shared 

environment”.

Given the high likelihood that partners within a couple share at least some meals together, 

many biomarkers for which food is presumed to be the primary source of exposure were 

moderately to highly correlated within a couple. This included mercury, which is found in 

some fish, and DEHP metabolites and MHiNCH, a metabolite of di 

(isononyl)cyclohexane-1,2-dicarboxylate (DiNCH®) (Calafat et al., 2015), which is used in 

food production materials (Salvy et al., 2007; Vartanian et al., 2015). Similarly, some soaps 

and toothpastes, which are likely shared within couples, could be a major driver of joint 

exposure to triclosan. In contrast, correlations of urinary bisphenol F within couples were 

low. At present the primary sources of bisphenol F are unknown. Recently, mustard has been 

found to be a major source of bisphenol F (D and Hengstler, 2016; Zoller et al., 2016). We 

assumed that food might be the main source based on the known sources for bisphenol A but 

this low correlation may indicate that there are other possible sources other than food or 

differences in absorption, metabolism, or excretion.

Interestingly, biomarkers whose main sources are personal care products (PCPs) were 

moderately to strongly correlated, such as tri-closan and benzophenone-3. However, there 

were exceptions, including methylparaben and MHBP, a metabolite of DBP, that were 

weakly correlated which may indicate that not all PCPs are shared by partners. For example, 

suntan/sun block, face and hand lotion, and hair spray were associated with higher urinary 

parabens in men from the same cohort (Nassan et al., 2017). However, among women from 

the same cohort, cosmetics including hair dye, foundation, blush, eye shadow, eye liner, or 

mascara were associated with higher paraben concentrations (Braun et al., 2014), suggesting 

the sources of PCP exposures are different in males and female partners and could be one 

reason why we observed lower correlations within couples for these chemicals. Biomarkers 

with potential major sources from the indoor environment such as 2,4-dichlorophenol, and 

2,5-dichlorophenol were also moderately to highly correlated but not ip-PPP and tb-PPP. As 

virtually all our male and female participants were employed outside the home, but do not 

likely work in the same location as their spouse, the lower correlations between certain 
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chemicals derived from the indoor environment may reflect differences in occupational 

exposure to these chemicals.

For metabolites of phthalates and their alternatives, we observed moderate correlations 

within couples and fair ICCs that represent “the shared environment” for couples. This may 

represent some similarities in diet, PCP use, indoor environment, and other potential 

exposure sources within couples. Our reported correlations are similar to the phthalate 

metabolite correlations reported among 50 couples enrolled in the Sperm Environmental 

Epigenetics and Development Study (SEEDS) who were also seeking fertility treatment (Wu 

et al., 2017a). However, we had no negative correlations between any of the studied 

biomarkers among couples, which is inconsistent with the negative correlations observed 

before for MEHHP and MEOHP among couples in SEEDS (Wu et al., 2017b). This might 

be explained by the bigger sample size. In our study, we included 380 couples who 

contributed with 841 paired urine samples.

In a previous analysis among a subset of couples from our cohort (n = 140) (2004–2008), 

there were moderate positive correlations between male and female partners for all SG-

corrected phthalate metabolite concentrations (Spearman coefficients ranged from 0.27 for 

free MEP to 0.42 for total MEHP) (Meeker et al., 2012), similar to what we observed in our 

current analysis. Correlation patterns of the biomarkers were similar among women and men 

in the EARTH study and similar to those reported by Chung et al. (Chung et al., 2018). 

However, the study reported by Chung et al. did not have multiple samples over time from 

the partners in a couple and thus used a different approach to define the “shared 

environment”. In our definition of the “shared environment”, we simultaneously adjusted the 

ICC for differences between couples.

Our study has some limitations, including the collection of spot urine samples, unknown 

time of last urination, and limited data to allow for the determination of exact sources, 

pathways and activities related to exposures. Also, although we restricted our sample to 

those collected on the same day from both partners, some exposure misclassification could 

have been introduced because of the relatively short half-lives of the target biomarkers. 

However, this misclassification is likely non-differential and we tried to minimize this by 

adjusting the ICC and the partial correlations by the time of sample collection. Finally, it is 

unclear whether these results are generalizable to all couples given that our study 

participants were recruited from a single fertility clinic in Boston, Massachusetts and mostly 

white and highly educated. However, biomarker concentrations for this population were 

similar to the rest of the U.S. (NHANES data) (CDC, 2018).

Our study had several strengths including the large sample size and the fact that couples 

could have repeated urine samples from each partner over time. Our study time frame ranged 

from 2004 through 2017 (~13 years), which allowed us to examine these biomarkers over 

long temporal duration. We also examined a large number of biomarkers including 

metabolites of phthalates and phthalate alternatives, phenols, PFRs, triclocarbon, and 

mercury in both partners. Finally, we addressed the lack of data on a couple’s joint exposure 

and thus contribution to pregnancy outcomes and offspring health.
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This analysis has important implications for exposure assessment in epidemiological studies 

that are interested in the impact of exposures on human health. For instance, both male and 

female exposures may contribute to altered fecundity. However, for some exposures it may 

be difficult to determine if this relation is due to the male or female partner’s exposure if the 

exposures are strongly correlated. From the causal inference standpoint, it may be difficult to 

disentangle maternal from paternal contributions for highly correlated biomarkers between 

partners. On the other hand, in cases of low correlated exposures between partners, it would 

be important to measure exposures in both partners if the outcome of interest is potentially 

related to both male and female exposures.

5. Conclusions

Urinary concentrations of biomarkers of multiple chemicals were mostly moderately 

correlated with fair temporal variability within couples suggesting similar exposure sources. 

Depending on the reproductive, perinatal, or child health outcome of interest, researchers 

should consider exposure correlations among couples when designing and analyzing data 

from their studies. Depending on the research question under study, it may be necessary to 

collect biological samples from both partners for exposure assessment as well as detailed 

temporal information related to lifestyle activities (e.g., diet, PCP use, and indoor 

environment exposures).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Exposome Spearman pairwise correlation globe among the couples in the Environment and 

Reproductive Health (EARTH) study.a Exposome correlation globe showing the Spearman 

pairwise correlation of biomarkers within women, within men, and within couples. b Right-

half represents biomarkers in women and left-half represents biomarkers in men. c All 

biomarkers are ordered according to the molecular weights within the same biomarker 

family (pheonls, phthalates and alternatives, and PFRs) from above to below. d Only 

Spearman’s rank correlations > 0.25 and <−0.25 were shown as connections in the globe. e 
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Color intensity and line width are proportional to the magnitude of the correlation. f Red 

lines denote positive correlations and blue lines denote negative correlations. Abbreviations: 

EARTH; the Environment and Reproductive Health Study; PFR; organophosphate flame 

retardants. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 2. 
Spearman pairwise correlation coefficients and 95% confidence intervals of biomarkers 

between the partners among couples in the Environment and Reproductive Health (EARTH) 

study. a All urinary biomarkers were adjusted for specific gravity. b All biomarkers 

concentrations were in μg/L, except part-per million (ppm) for hair mercury. c All 

biomarkers are ordered according to the molecular weights within the same biomarker 

family. d Partial correlation coefficients are adjusted for men’s and women’s race (Caucasian 

or not), age (continuous), ever smoking, and time the sample collection. Abbreviations: 

EARTH; the Environment and Reproductive Health Study; N, number of couples; n, number 

of the samples provided by couples; Correlation, Spearman correlation coefficient; SG, 

specific gravity adjusted; PFR; organophosphate flame retardants.
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Fig. 3. 
Intra-class correlation coefficients (ICCs) and 95% confidence intervals for biomarkers 

among the couples in the Environment and Reproductive Health (EARTH) study. a All 

biomarkers concentrations were in μg/L, except part-per million (ppm) for hair mercury. b 

All biomarkers are ordered according to the molecular weights within the same biomarker 

family. c ICC represents ICCs for SG-adjusted biomarkers in multiple paired from couple’s 

samples. d Adjusted ICCs are adjusted for men’s and women’s race (Caucasian or not), age 

(continuous), ever smoking, and time of the sample collection. Abbreviations: EARTH; the 

Environment and Reproductive Health Study; N, number of couples; n, number of the 

samples provided by couples; ICC, intra-class correlation coefficient; SG, specific gravity 

adjusted.
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Table 1

Demographic characteristics for 380 couples in the Environment and Reproductive Health (EARTH) study.

Baseline characteristics
Female partner
(N=380)a

Male partner
(N=380)a

Age (years) 34.3 ± 4.25 36.0 ± 5.58

Race

Caucasian 310 (82) 327 (86)

Black/African American 12 (3) 12 (3)

Asian 40 (11) 27 (7)

Other 18 (5) 14 (4)

BMI (Kg/m2)a 24.4 ± 4.93 27.6 ± 5.33

BMI categories

Underweight 10 (3) 3 (1)

Normal weight 244 (64) 115 (30)

Overweight 79 (21) 172 (45)

Obese 47(12) 90 (24)

Education categories

Less than college graduate 27(7) 47 (12)

College graduate 115 (30) 101 (27)

Graduate degree 195 (51) 152 (40)

Missing 43 (11) 80 (21)

Smoking status

Never 283 (74) 261 (69)

Past 87 (23) 94 (25)

Current 10 (3) 25 (7)

Ever smokers 97 (26) 119 (31)

Time varying characteristics for
 urine sample collection n=841 n=841

Time of the day

<7 am and ≤9 am 248 (29) 425 (51)

<9 am and ≤12 pm 499 (59) 322 (38)

Afternoon: >12 pm 94 (11) 94 (11)

Collected in April through

 September 401 (48) 401 (48)

Data are presented as N or n (%) for categorical/binary variables and mean ± SD for continuous variables. Abbreviations: EARTH; the 
Environment and Reproductive Health Study; N, number of participant; n, number of urine samples; SD, standard deviation; BMI, body mass 
index; Kg, Kilogram; m, meter.
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